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I. BACKGROUND

Cirrus and stratus clouds are

=currently the subject of active
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_'hours. Using this data, we develop a

summary of cloud boundaries for the

month of November for a single

location in the mid-continental

research because of their importance

in correctly modeling global

climatic trends. Many cloud

properties are of interest,

including particle concentrations,

size distributions, integrated ice

mass path, ice mass fluxes,

supercooled liquid water

distributions and cloud location.

Of these, cloud location would seem

to be one of the simpler parameters

to measure. However, Uttal and

Intrieri (1993) have recently

demonstrated that different range-

gated remote sensors operating at

different wavelengths often detect

significantly different cloud

boundaries. They concluded that

care must be taken in choosing an

appropriate combination of sensors

to accurately record cloud boundary

heights for a wide range of

meteorological situations.

-- To our knowledge, previous

observations of cloud boundaries

! United States.

2. EX PER IMENT

I _

The First International

Satellite Cloud Climatology Project

(ISCCP) Regional Experiment (FIRE)

II Experiment conducted in

Coffeyville, Kansas during the

winter of 1991, was a large, multi-

agency experiment designed to study

the effects of cirrus clouds on the

planetary radiation budget. During

the experiment the NOAA/WPL 8-mm

scanning Doppler radar and the PSU

3-nun radar pointed vertically, and

collected high-resolution, range-

gated data on clouds as they passed

over the observation site. The WPL

radar collected a beam (profile) of

data every 0.25 sec, which were

subsequently averaged to 3-s

samples, with range-gate spacing of

37.5 m. The PSU radar collected a

beam of data every 4-6 sec, which

have been limited to studies of were averaged to 60-s samples, with

cloud bases with ceilometers, cloud range-gate spacing of 30 m.

tops with satellites, and

intermittent reports by aircraft

pilots. Comprehensive studies that

simultaneously record information of

cloud top and cloud base, especially

in multiple layer cases, have been

difficult, and require the use of

active remote sensors with range-

gated information.

In this study, we examined a

4-week period during which the NOAA

Wave Propagation Laboratory (WPL)

8-mm radar (Kropfli et al., 1990)

and the Pennsylvania State

University (PSU) 3-mm radar

(Albrecht et al., 1992) operated

quasi-continuously, side by side. By

quasi-continuously, we mean that

both radars operated during all

periods when cloud was present,

during both daytime and nighttime

To determine cloud boundaries,

WPL uses a program which searches

for user-defined threshold values in

individual beams of data to

determine in-cloud versus out-of-

cloud conditions. PSU has developed

an alternative cloud boundary

detection algorithm that applies a

box filter scheme. For each box,

several pixels wide by several

pixels high, the pixel in the center

of the box is set to "on" for cloud

or "off" for no-cloud depending on

whether the total number of pixels

in the box exceeds, or does not

exceed a user-specified threshold.

The different schemes for cloud

boundary detection do not appear to

produce significantly different

results.
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Both WPL and PSU divided

information on cloud boundaries into

6-h periods for the entire

experimental month. The data sets

were time matched for this study to

include only the 6-h periods when

both sensors were operating. In this

preliminary study, we have not yet

corrected for short periods within a

given 6-h period when the two

sensors might not have been running

at exactly coincident times. Also,

the WPL radar always collected data

from the surface up to 12 km, while

the PSU radar was adjusted to

bracket the clouds of interest.

Occasionally,. when the lowest range

gate was too high, PSU lost some

information on lower cloud

boundaries. These factors contribute

to some of the differences between

radars in the following results.

3. RESULTS

Figures I and 2 show

histograms of the frequency of

occurrence of cloud base height for

the WPL and PSU radars,

respectively. The figures show a

distinct bimodal distribution,

suggesting that cloud bases tend to

occur predominantly near 2.5 km and

7.5 km. Both distributions indicate

that cloud base frequency is

relatively low near 5 km. Clouds

occurred with approximately equal

frequency at stratus and cirrus

levels, which is interesting because

the generating mechanisms for the

clouds at these two altitudes are

quite different._ ....

The WPL radar shows a third

peak near the surface that is not

reaching cloud top. Figures 5 and 6

show histograms of cloud thickness

from the WPL and PSU radars,

respectively. Cloud thickness

appears to be about 1.0 to 1.3 km on

average.

Makhover and Nudelman (1989)

report average cirrus bases and tops

over the European Soviet Union at 7

and 9 km, respectively, with very

little annual variation. These are

in good agreement with our results.

4. DISCUSSION

This study is unique in that

it was not limited by cloud

thickness and/or multiple layer

cases, and achieved information on

both cloud bases and cloud tops

simultaneously. Future work with

this data set will include examining

diurnal effects, differences between

precipitating and n0n-precipitating

cases, and the generation of

separate statistics for the stratus

and cirrus clouds.
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Figure i. WPL cloud base frequency
distribution
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Figure 3. WPL cloud top frequency
distribut ion
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Figure 5. WPL cloud thickness

frequency distribution
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Figure 2. PSU cloud base frequency
distribution
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Figure 4. PSU cloud top frequency
distribution
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Figure 6. PSU cloud thickness
frequency distribution
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